如图 在三角形abc中 ab等于ac,角bac=120°,AD⊥BC

如图, ABC中,∠ BAC=120°,AB=AC,点D为BC边上的点
答案 如图,作$AF\bot BC$于$F$,作$EG\bot AC$于$G$$\because \triangle ABC$中,$\angle BAC=120^ {\circ}$,$AB=AC$$\angle B=\angle C=30^ {\circ}$在$R {t}\triangle CEG$ 连接AF,根据等腰三角形性质和三角形内角和定理求出∠B=∠C=30°,根据线段的垂直平分线的性质得出BF=AF,推出∠BAF=∠B=30°,求出∠FAC=90°,根据含30度角的直角三角形性质求出 如图在 ABC中,AB=AC,∠BAC=120°,EF为AB的垂直 如图,在边长为2cm的正方形ABCD中,点Q为BC边的中点,点P为对角线AC上一动点,连接PB、PQ,则 PBQ周长的最小值为cm(结果不取近似值). 二维码 回顶部如图,在 ABC中,AB=AC,∠BAC=120°.D是BC的中点 题目 如图,在 ABC中,∠BAC=120°,AB=AC,点M、N在边BC上,且∠MAN=60°若BM=2,CN=4,则MN的长为 相关知识点: 三角形 三角形的应用 特殊三角形 等腰三角形 等腰三角形的分类讨 如图,在 ABC中,∠BAC=120°,AB=AC,点M、N在边BC上,且

如图,已知等腰 ABC,AB=AC,∠BAC=120°,AD⊥BC于点D,点P
答案 如图,已知等腰 ABC,AB=AC,∠BAC=120°,AD⊥BC于点D,点P是BA延长线上一点,点O是线段AD上一点,OP=OC,下面结 2013年6月6日 在三角形ABC中,角BAC=120度,以BC为边向形外作等边三角形BCD,把三角形ABD绕着点D按解:∵ BCD是等边三角形 ∴∠BDC=∠BCD=60。 ∵∠BAC=120。 在三角形ABC中,角BAC=120度,以BC为边向形外作等边三角 2017年11月24日 解:解法一:设∠A=x.∵AD=BD,∴∠ABD=∠A=x;∵BD=BC,∴∠BCD=∠BDC=2x;∵AB=AC,∴∠ABC=∠BCD=2x,∴∠DBC=x;∵x+2x+2x=180°,∴x=36°,∴∠A=36°,∠ABC=∠ACB=72°. 如图所示,在三角形ABC中,AB=AC,点D在AC上且BD=BC=AD,求三角形各角 (1)如图,在 ABC中,∠BAC=90°,AB=AC,点D在BC上,且BD=BA,点E在BC的延长线上且CE=CA,试求∠DAE的度数; (2)如果把第(1)题中“AB=AC”的条件去掉,其余条件不 (1)如图,在 ABC中,∠BAC=90°,AB=AC,点D在BC上

已知:在三角形ABC中,AB=AC,角BAC=20度,D点
2023年5月28日 既然是“高中标签”且没有“平面几何”标签,那上三角 已知:在三角形 ABC 中,AB=AC, 角 BAC=20 度,D 点在 AB上且 AD=BC 求角 ACD 的度数? 图 1 如图 1 标记字母与数量,分别在三角形 DBC 与三角形 ABC 中,由正弦 如图,三角形ABC中,角C等于角ABC等于2角A,BD是边AC上的高,求角DBC的度数?这如图,在三角形ABC中,AB=AC,作业帮∵∠BAC=120∘,AB=AC,∴ ABM绕点A逆时针旋转120∘至 APC,连接PN,∴ ABM≌ APC,∴∠B=∠ACP=30∘,PC=BM=2,∠BAM=∠CAP,∴∠NCP=60∘,∵∠MAN=60∘,∴∠BAM+∠NAC=∠NAC+∠CAP=60∘=∠MAN,∵AM=AP,AN=AN,∴ MAN≌ PAN 如图,在 ABC中,∠BAC=120°,AB=AC,点M、N在边BC上,且 在DC上截取DE=BD,连接AE,如图所示,∵AD⊥BC,∴∠ADB=∠ADE=90∘,在 ABD和 AED中,⎧⎩⎨⎪⎪AD=AD∠ADB=∠ADEDB=DE,∴ ABD≌ AED(SAS),∴AB=AE,∴∠B=∠AEB,又AB+BD=CD,DE=BD,∴AB+DE=CD,而CD=DE+EC,∴AB=EC,∴ 如图,在 ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD

已知:如图,在 ABC中,AB=AC,点D,E分别在边AC
(1)证明:∵AB=AC, ∴∠ABC=∠ACB; ∵∠ABD=∠ACE, ∴∠OBC=∠OCB, ∴OB=OC (2)证明:如图, A E D B C 在 ABD与 ACE中, ∠A=∠A ABAC ∠ABD=∠ACE, ∴ ABD≌ ACE(ASA), ∴AD=AE,而AB=AC, ∴BE=CD本题主要考查了全等 如图, ABC中,AB=BC,BE⊥AC于点E,AD⊥BC于点D,∠BAD=45°,AD与BE交于点F,连接CF. (1)求证:BF=2AE;(2)若CD=2,求AD的长. 考点点评: 本题考查了全等三角形的判定与性质,等腰直角三角形的判定与性质,等腰三角形三线合一的性质,勾股定理的应用,以及线段垂直平分线上的点到线段两端点的 如图, ABC中,AB=BC,BE⊥AC于点E,AD⊥BC于点D 如图,在等腰三角形ABC中,∠BAC=120°,AB=AC=2,点D是BC边上的一个动点(不与 B、C重合),在AC上取一点E,使∠ADE=30°.(1)求证: ABD∽ DCE;(2)设BD=x,AE=y,求y关于x的函数关系式并写出自变量x的取值范围;(3)当 ADE是等腰【题目】 如图,在等腰三角形ABC中,∠BAC=120°,AB 如图,在Rt ABC中,∠BAC=90°,AB=AC,点D是BC边上一动点,连接AD,把AD绕点A逆时针旋转90°,得到AE,连接CE,DE.点F是DE的中点,连接CF. (1)求证:CF= AD; (2)如图2所示,在点D运动的过程中,当BD=2CD时,分别延长CF,BA,相交于 如图,在Rt ABC中,∠BAC=90°,AB=AC,点D是BC边上一

如图,在等腰三角形ABC中,AB=AC,∠BAC=120°,AD⊥
如图,在等腰三角形ABC中,AB=AC,∠BAC=120°,AD⊥BC于点D,点P是BA延长线上一点,点O是线段AD上一点,OP=OC,下面的结论:①∠APO+∠DCO=30°;② OPC是等边三角形;③AC=AO+AP;④ABC OCP S =S四边形其中所有正确结论的序号为( )P AB D A ①②③2012年10月11日 ab=ac 角bac=120度 所以角abc=角acb等于60度 所以角edca等于30度 由30度所对的边等于斜边的一半加上勾股定理即可算出ce 也可以得出ac 做垂线垂直于bc再次利用由30度所对的边等于斜边的一半加上勾股定理(或者正余弦函数)即可算出bc也就已知如图三角形ABC中,AB=AC,角BAC=120度,DE垂直平分 如图,在三角形ABC中,角BAC=120度,AB=AC,点D在BC上,且BD=BA,点E在BC的延长线上,且CE=CA 1试求角DAE的度数 2如果把试题中AB=AC的条件去掉,其余条件不变,那么角DAE的度数会改变吗?为什么?如图,在三角形ABC中,角BAC=120度,AB=AC,点D在BC上 2009年8月27日 如图,在三角形ABC中,角BAC=120度,AD平方角BAC 8 在三角形ABC中,角BAC=120度,AD平分角BAC角BC 如图三角形abc中,角bac=120度,ad平分角bac,交 19 如图,在 ABC中,AD平分∠BAC,交BC于如图所示,在 ABC中,∠BAC=120°,AD平分∠BAC交BC于

如图,在三角形abc中,AB=AC,BC=BD,AD=DE=EB,求角A的度数
2013年10月18日 如图,在三角形abc中,AB=AC,BC=BD,AD=DE=EB,求角A的度数设∠ABD=X∵DE=BE∴∠ABD=∠BDE=X∴∠AED=X+X=2X∵AD=DE∴∠A=∠AED=2X∴∠BDC=∠A+∠ABD=3X∵BD=BC∴∠C=∠BDC=3X∵AB 2017年11月24日 如图所示,在三角形ABC中,AB=AC,点D在AC上且BD=BC=AD,求三角形各角的度数解:解法一:设∠A=x.∵AD=BD,∴∠ABD=∠A=x;∵BD=BC,∴∠BCD=∠BDC=2x;∵AB=AC,∴∠ABC=∠BCD=2x,∴∠DBC=x;∵x+2x+2x=180°,∴x 如图所示,在三角形ABC中,AB=AC,点D在AC上且BD 2010年10月17日 在三角形ABC中AB等于AC,角BAC等于120度,AB的垂直平分线交BC于D,且BD等于6厘米求DC的长解题思路:利用特殊角,运用余弦定理,先求出AB长度,然后求出BC长度,DC=BCBDAB的垂直平分线交AB于点F过A做AE垂直BC于点E又因在三角形ABC中AB等于AC,角BAC等于120度,AB的垂直平分 如图,在等腰三角形ABC中,AB=AC,∠BAC=120°,AD⊥BC于点D,点P是BA延长线上一点,点O是线段AD上一点,OP=OC,下面的结论:①∠APO+∠DCO=30°;② OPC是等边三角形;③AC=AO+AP;④ABC OCP S =S四边形其中所有正确结论的序号为( )P AB D A ①②③【题文】如图,在等腰三角形ABC中,AB=AC,∠BAC=120

在 ABC中,AB=AC,∠BAC=α(0°百度教育 Baidu Education
在 ABC中,AB=AC,∠BAC=α(0 ° α 60°),将线段BC绕点B逆时针旋转60°得到线段BD(1)如图1,直接写出∠ABD的大小(用含α的式子表示 解:(1)30°α(2) ABE为等边三角形证明:连接AD,CD,ED∵线段BC绕点B逆时针旋转60°得到线段BD,∴BC=BD,∠DBC=60°∵∠ 如图,在 ABC和 ADE中,AB=AC,AD=AE,∠BAC=∠DAE=90°(1)当点D在AC上时,如图①,线段BD,CE有怎样的数量关系和位置关系?直接写出你猜想的结论;(2)将图①中的 ADE的位置改变一下,如图②,其他条件不变,则线段BD,CE有怎样的数量 【题目】 如图,在 ABC 和 ADE 中, AB=AC , AD=AE 如图,在 ABC中,AB=AC,∠BAC=80°,O为 ABC内一点,且∠OBC=10°,∠OCA=20°,求∠BAO的度数. 解:作∠BAC的角平分线与CO的延长线交于点D,连接BD,则∠BAD=∠DAC ∵AB=AC,∠BAD=∠DAC,AD=AD, ∴ ABD≌ ACD, ∴BD=CD,∠ 如图,在 ABC中,AB=AC,∠BAC=80°,O为 ABC内一点 2014年6月5日 如图,在三角形ABC中,AB=AC,角BAC=120°,D,E是边BC上的点,角DAE=60°答:1)见下图所示, AB'D'即 ACD',点B'与点C重合2)因为: ABD≌ ACD' 所以:AD=AD',BD=CD',∠BAD=∠CAD 如图,在三角形ABC中,AB=AC,角BAC=120°,D,E是边

如图,在 ABC中,AB=AC,∠BAC=120°.D是BC的中点
本题考点: 等腰三角形的性质;含30度角的直角三角形. 考点点评: 此题主要考查等腰三角形的性质及含30度角的直角三角形的性质的综合运用,用到的知识点为:等边对等角;等腰三角形底边上的中线和底边上的高,顶角的平分线互相重合;直角三角形中,30°所对的直角边等于斜边的一 2018年3月21日 如图,三角形ABC中,角BAC=120度,AD垂直BC于D,且AB+BD=DC,求角C的度数 (用两种方法)方法1:延长DB至E使得BE=BA,则DE=DB+BE=DB+BA=DC,易证ADE全等于ADC,AC=AE,所以三角形ACE为等腰三角形,角AEB=角 C又,角ABC=角A 如图,三角形ABC中,角BAC=120度,AD垂直BC于D,且AB+BD 2014年3月19日 如图,在 ABC中,AB=7,AC=11,点M是BC的中点,AD是角BAC的平分线,MF平行于AD延长CA到E,使得CF=FE。 如图,在 ABC中,AB=7,AC=11,点M是BC的中点,AD是角BAC的平分线,MF平行于AD,则CF的长为多少?如图,在 ABC中,AB=7,AC=11,点M是BC的中点,AD是 如图, ABC中,BC=10,AC−AB=4,AD是∠BAC的角平分线,CD⊥AD,则S BDC的最大值为如图, ABC中,BC=10,ACAB=4,AD是∠BAC的角平分线,CD

如图,在 ABC中,AB=13,BC=14,AC=15,求 ABC的
分析:要求 ABC的面积,必须求出三角形某一边上的高,故先作出某一边上的高,并求出高的长. 过点A作AD⊥BC,垂足为点D.设BD=x,则CD=14-x.A G B D C证明:连接CE,如右图所示,∵AB=AC,AD⊥BC,∴AD是∠BAC的角平分线,∴BE=CE,∴∠EBC=∠ECB,又∵∠ABC=∠ACB,∴∠ABC−∠EBC=∠ACB−∠ECB,即∠ABE=∠ACE,又∵CG∥AB,∴∠ABE=∠CGF,∴∠CGF=∠FCE,又∠FEC=∠CEG,∴ 如图,在等腰三角形ABC中,AB=AC,AD⊥BC于点D,CG 2014年2月19日 如图,在三角形abc中,ab等于ac,角bac等于120度,AD垂直于ac,交BC于点d,求证BC∵∠BAC=120°,AB=AC∴∠B=∠C=30°∵AD⊥AC∴ ACD为直角三角形∴DC=2AD (30°角所对的直角边是斜边的一半)∵∠BAD=∠BAC∠DA 百度首页 如图,在三角形abc中,ab等于ac,角bac等于120度,AD 如图,等腰三角形ABC中,点D平分边AB,且AD=BC,你能求出三角形ABC的内角吗?快来挑战这道数学题吧!如图,在三角形ABC中,AB=AC,点D在边AB上,且AD

如图,在 ABC中,AB=AC,点D在AC上,且BD=BC=AD,求
根据等边对等角可得∠ABC=∠C,∠A=∠ABD,∠C=∠BDC,再根据三角形的一个外角等于与它不相邻的两个内角的和可得∠BDC=∠A+∠ABD=2∠A,然后根据三角形的内角和定理列出方程求解即可.2013年12月19日 如题AB=AC,∠BAC=20,∠BDC=30得到∠ACD=10°与等边对等角相矛盾。 若AB=AC,∠A=20°,AD=BC。求得∠BDC=30°。解:过A点作CD的垂线交CD的延长线于点E,作AF⊥BC,垂足为F。 在 AEC和 CFA中 ∵∠E=∠AFC=90°∠ECA=∠FAC,AC=AC如图,三角形ABC中,AB=AC,∠BAC=20,∠BDC=30,求证AD=BC2023年5月28日 既然是“高中标签”且没有“平面几何”标签,那上三角 已知:在三角形 ABC 中,AB=AC, 角 BAC=20 度,D 点在 AB上且 AD=BC 求角 ACD 的度数? 图 1 如图 1 标记字母与数量,分别在三角形 DBC 与三角形 ABC 中,由正弦 已知:在三角形ABC中,AB=AC,角BAC=20度,D点 如图,三角形ABC中,角C等于角ABC等于2角A,BD是边AC上的高,求角DBC的度数?这如图,在三角形ABC中,AB=AC,作业帮

如图,在 ABC中,∠BAC=120°,AB=AC,点M、N在边BC上,且
∵∠BAC=120∘,AB=AC,∴ ABM绕点A逆时针旋转120∘至 APC,连接PN,∴ ABM≌ APC,∴∠B=∠ACP=30∘,PC=BM=2,∠BAM=∠CAP,∴∠NCP=60∘,∵∠MAN=60∘,∴∠BAM+∠NAC=∠NAC+∠CAP=60∘=∠MAN,∵AM=AP,AN=AN,∴ MAN≌ PAN 在DC上截取DE=BD,连接AE,如图所示,∵AD⊥BC,∴∠ADB=∠ADE=90∘,在 ABD和 AED中,⎧⎩⎨⎪⎪AD=AD∠ADB=∠ADEDB=DE,∴ ABD≌ AED(SAS),∴AB=AE,∴∠B=∠AEB,又AB+BD=CD,DE=BD,∴AB+DE=CD,而CD=DE+EC,∴AB=EC,∴ 如图,在 ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD (1)证明:∵AB=AC, ∴∠ABC=∠ACB; ∵∠ABD=∠ACE, ∴∠OBC=∠OCB, ∴OB=OC (2)证明:如图, A E D B C 在 ABD与 ACE中, ∠A=∠A ABAC ∠ABD=∠ACE, ∴ ABD≌ ACE(ASA), ∴AD=AE,而AB=AC, ∴BE=CD本题主要考查了全等 已知:如图,在 ABC中,AB=AC,点D,E分别在边AC 如图, ABC中,AB=BC,BE⊥AC于点E,AD⊥BC于点D,∠BAD=45°,AD与BE交于点F,连接CF. (1)求证:BF=2AE;(2)若CD=2,求AD的长. 考点点评: 本题考查了全等三角形的判定与性质,等腰直角三角形的判定与性质,等腰三角形三线合一的性质,勾股定理的应用,以及线段垂直平分线上的点到线段两端点的 如图, ABC中,AB=BC,BE⊥AC于点E,AD⊥BC于点D

【题目】 如图,在等腰三角形ABC中,∠BAC=120°,AB
如图,在等腰三角形ABC中,∠BAC=120°,AB=AC=2,点D是BC边上的一个动点(不与 B、C重合),在AC上取一点E,使∠ADE=30°.(1)求证: ABD∽ DCE;(2)设BD=x,AE=y,求y关于x的函数关系式并写出自变量x的取值范围;(3)当 ADE是等腰如图,在Rt ABC中,∠BAC=90°,AB=AC,点D是BC边上一动点,连接AD,把AD绕点A逆时针旋转90°,得到AE,连接CE,DE.点F是DE的中点,连接CF. (1)求证:CF= AD; (2)如图2所示,在点D运动的过程中,当BD=2CD时,分别延长CF,BA,相交于 如图,在Rt ABC中,∠BAC=90°,AB=AC,点D是BC边上一 如图,在等腰三角形ABC中,AB=AC,∠BAC=120°,AD⊥BC于点D,点P是BA延长线上一点,点O是线段AD上一点,OP=OC,下面的结论:①∠APO+∠DCO=30°;② OPC是等边三角形;③AC=AO+AP;④ABC OCP S =S四边形其中所有正确结论的序号为( )P AB D A ①②③如图,在等腰三角形ABC中,AB=AC,∠BAC=120°,AD⊥ 2012年10月11日 ab=ac 角bac=120度 所以角abc=角acb等于60度 所以角edca等于30度 由30度所对的边等于斜边的一半加上勾股定理即可算出ce 也可以得出ac 做垂线垂直于bc再次利用由30度所对的边等于斜边的一半加上勾股定理(或者正余弦函数)即可算出bc也就已知如图三角形ABC中,AB=AC,角BAC=120度,DE垂直平分